ANTICANCER RESEARCH 30: 1169-1182 (2010)

Review

Gamma-glutamyltransferase of Cancer Cells at the Crossroads
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Abstract. Gamma-glutamyltransferase (GGT) is a key
enzyme involved in glutathione metabolism and whose
expression is often significantly increased in human
malignancies. In the past years, several studies focused on
the possible role of GGT in tumor progression, invasion and
drug resistance. The involvement of a pro-oxidant activity of
GGT, besides its early recognized contributions to cellular
antioxidant defenses, has been repeatedly documented. GGT-
derived pro-oxidants can modulate important redox-sensitive
processes and functions of the cell, with particular reference
to its proliferative/apoptotic balance, which has obvious and
important implications in tumor progression and drug
resistance. In addition, the specificity of the enzymatic
reaction carried out by GGT suggests that suitable pro-drugs
could be selectively metabolized (activated) by GGT
expressed in tumor tissue. This paper is a review of the
recent investigation in the field, focusing on the potential role
of GGT as a diagnostic/prognostic marker, as well as a
target for anticancer treatments.

Gamma-glutamyltransferase (GGT) is a membrane-bound
enzyme involved in the metabolism of glutathione (gamma-
glutamyl-cysteinyl-glycine; GSH), and is expressed by a
wide number of cell types. GGT catalyzes the transfer of the
glutamyl moiety, linked through the glutamate gamma-
carboxylic acid to cysteine, to acceptor molecules including
peptides, amino acids and water. Being located on the outer
aspect of the cell membrane, GGT in the first place catalyzes
the degradation of extracellular GSH, thus favouring the
recovery of constituent amino acids for subsequent
intracellular GSH resynthesis. As GSH is the main water-
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soluble antioxidant within the cell, GGT has been
traditionally regarded as a component of the cell protection
system against oxidative stress (1). On the other hand, other
pathophysiologically relevant compounds are also GGT
substrates, in particular all GSH conjugates, including
leukotriene C4 (2), S-nitroso-glutathione (GSNO; 3) and
GSH adducts of xenobiotics formed by the action of
glutathione-S-transferases (4).

GGT expression varies considerably among normal
tissues. In particular, high GGT activities are present on the
luminal surface of secretory and absorptive cells, including
those of bile ducts, bile canaliculi and proximal tubules of
the kidney, and in endothelial cells of nervous system
capillaries (1, 5). A dysregulated expression of GGT has
been detected in several tumor types (6), and several papers
have suggested a role for GGT in GSH-dependent drug-
resistance mechanisms (7). On the other hand, recent
findings have documented that redox processes ensuing from
GGT-mediated metabolism of extracellular GSH may be
implicated in the modulation of critical aspects of tumor cell
biology (8, 9), and the possibility of exploiting tumor GGT
as a means for local activation of anticancer pro-drugs has
also been recently explored (10). Details of the several
aspects involved are illustrated in the following pages.

Pathways of GGT Induction

Early reports showing the appearance of GGT-positive foci
in laboratory animals exposed to chemical carcinogens first
suggested the hypothesis of GGT as an early marker of
neoplastic transformation (1, 7). The increased expression of
GGT in actively proliferating pre-neoplastic foci in the liver
was recently confirmed (11). The mechanisms underlying the
increased GGT expression induced by carcinogens remained
however unidentified. Several studies showed that GGT is
up-regulated in different cell types after acute exposure to
oxidative stress (12-16), and the involvement of activator
protein-1 (AP-1)-like transcription factor(s) (17), or of
electrophile response element/nuclear factor erythroid 2-
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related factor 2 (EpRE/Nrf2) signalling through activation of
the extracellular signal-regulated kinase (ERK) and p38
mitogen-activated protein kinase (MAPK) pathways were
suggested (18). The involvement of a ras-dependent
transduction pathway was recently proposed (11), and
indeed, a connection between GGT expression and activation
of Ras-MAPK pathways has been demonstrated in colon
cancer cells following gamma-irradiation (19), as well as
exposure to oxidative stress (20). Reactive oxygen species
(ROS) have been implicated in the process of carcinogenesis,
and at the same time, the redox regulation of many genes in
response to ROS/electrophiles seems to modulate GGT
expression; this could altogether explain the increased GGT
expression described in tumors.

Interestingly, GGT mRNA was shown to be induced also by
cytokines, including tumor necrosis factor alpha (TNF-alpha)
(21), and interferon (IFN)-alpha and -beta (22), and evidence
was obtained that TNF-alpha is able to induce GGT expression
through nuclear factor-kappaB (NF-kB)-dependent signaling,
specificity protein 1 (Spl) transcription factor and RNA
polymerase II recruitment to the GGT promoter (23). These
results seem to connect inflammation to GGT expression, not
just as a response to inflammation-related oxidative stress, but
rather as the effect of specific inflammatory cytokines. From
this perspective, the biological significance of an increased
GGT expression could thus be twofold, i.e. i) a defensive
mechanism against oxidative stress, as well as ii) a regulatory
mechanism, possibly through GGT-mediated metabolism of
leukotrienes and GSNO.

GGT Expression in Neoplasia

The distribution and concentration of GGT in human tumors
present several differences from what is observed in normal
tissues. Increased levels of GGT have been observed in
cancer of ovary (24), colon (25), liver (26), astrocytic glioma
(27), soft tissue sarcoma (28), melanoma (29, 30) and
leukemias (31). A large study by Hanigan et al. (6) of 451
human tumors showed that most tumors deriving from GGT-
positive tissues were positive themselves, and that
carcinomas of lung and ovary were also generally GGT-
positive despite deriving from GGT-negative epithelia. In
studies on melanoma cells in vitro and in vivo, elevated GGT
activity was found to accompany an increased invasive
growth (29, 32, 33), and a positive correlation was described
between GGT expression and unfavourable prognostic signs
in human breast cancer (34). Nevertheless, a constant
relationship between malignant transformation and the
expression of GGT was not demonstrated (1). Besides the
studies reported above, other works did not find any
correlation between GGT expression and standard clinical-
pathological parameters in models of prostatic (35),
colorectal (36) and breast cancer (37). These differences can
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be explained as the result of the high variability present in
cancer cells, as well as the effect of other factors, such as the
environment, drugs and diet, which may alter the phenotype
of neoplastic lesions, including GGT expression (38). A
summary of the available data concerning GGT expression
in a series of important human neoplasms has been recently
provided (7).

GGT Functions in the Cancer Cell

Several studies have addressed the relationships of GGT
activity with the malignant phenotype, in particular the
question of whether an increased GGT expression itself plays
any active role in neoplastic transformation (1). The
involvement of GGT in cellular resupply of GSH, and the
increased resistance to pro-oxidant drugs observed in several
GGT-expressing cell lines suggested the inclusion of GGT
among the components of cellular defensive systems. On the
other hand, a number of recent findings indicate that, under
particular conditions, the metabolism of GSH by GGT can
exert pro-oxidant effects, with modulatory effects on several
redox-sensitive processes (7-9).

GSH is synthesized inside cells and transported in the
extracellular milieu through plasma-membrane transporters
(39), down a concentration gradient (millimolar vs.
micromolar). Extracellular metabolism of GSH by GGT, in
concert with cell surface dipeptidases, promotes the release
and recovery by cells of constituent amino acids, among
which glutamic acid (40) and essential cysteine (41). Indeed,
studies performed both in vitro and in vivo showed that GGT-
overexpressing cells are able to utilize extracellular GSH as
a source of cysteine more efficiently (42-44), resulting in a
selective growth advantage both at physiological and at
limiting cysteine concentrations (45, 46). It was in fact
observed that a short (2 h) inhibition of GGT is able to lower
intracellular cysteine in GGT-positive cervical carcinoma cell
lines (47). Thus, the favouring action of GGT in tumor
growth is twofold, in that it operates as a source of essential
amino acids both for protein synthesis and for the
maintenance of intracellular levels of GSH (Figure 1).

Adequate levels of GSH are the basis of cellular resistance
against several electrophilic/alkylating compounds and
indeed, GGT-overexpressing cells were shown to be more
resistant to hydrogen peroxide (48), and chemotherapics such
as doxorubicin (49), cisplatin (45, 50-51) and 5-fluorouracil
(52). In melanoma cells, GSH depletion and GGT inhibition
significantly increased cytotoxicity of oxidative stress
conditions (53). Interestingly, the same treatments were also
shown to induce GGT expression (49-52), possibly a
protective adaptation induced by oxidative stress itself. As
such, GGT expression would perfectly fit in the so-called
‘resistance phenotype’, i.e. a common pattern of biochemical
changes exhibited by chemically transformed, pre-neoplastic
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Figure 1. Intra- and extracellular reactions promoted by GGT in cancer cells: resupply of cysteine for protein and glutathione synthesis (1),
production of cysteinyl-glycine giving rise to redox reactions (2) and formation of adducts with cisplatin (3), oxidative DNA damage and genomic
instability (4), modulatory effects on protein thiol residues (5). ROS, Reactive oxygen species; GSH, glutathione.

cells, allowing them a better defense against injury by
oxidants and xenobiotics (7).

Conflicting results were however reported on the supposed
roles of GSH and GGT in protection against cell injury. In
the first place, a decrease rather than an increase of
intracellular GSH in different cancer cell lines transfected
with GGT c¢cDNA was described, both in vitro (46, 54-55)
and in tumors obtained by transplantation in nude mice (45,
46, 56). An inverse relationship between GGT activity and
intracellular GSH levels was even described in cisplatin-
resistant melanoma (57, 58) and A2780 ovarian carcinoma
(59) cell lines. Finally, no significant correlations were found
between GSH levels and cisplatin resistance in a study with
different human tumor xenografts (60), and in human
patients with germ cell tumors, there was no evidence of
increased resistance to cisplatin in GGT-positive tumors (61).
Several pieces of evidence suggest that these apparent
inconsistencies can be explained taking into account
additional aspects of GGT activity which lead to
extracellular detoxication of platinum-based drugs, but also
to pro-oxidant effects catalyzed by metal ions present
extracellularly (9).

GGT, Extracellular Thiols and
Cisplatin Resistance

It has been documented that sulfur amino acids, in particular
cysteine (62, 63), and other small peptides containing
cysteine, such as cysteinyl-glycine and GSH (64), are able to
form adducts with cisplatin (cis-diamminedichloroplatinum
(II)), and that such complexes are poorly transported across
plasma membrane. Similar complexes were also described in
plasma of patients treated with oxaliplatin (65). The final
effects of such extracellular interactions are a decreased
intracellular accumulation and a reduced toxicity of cisplatin
towards treated cells (62, 64). Interestingly, it was also
shown that cisplatin adducts with cysteinyl-glycine are
formed 10 times faster than those with GSH, and that such
adducts are present in the extracellular medium of GGT-
overexpressing HeLa cells treated with cisplatin (66). This
effect can be explained by the fact that the pK, of cysteinyl-
glycine thiol is significantly lower than that of GSH (6.4 vs.
8.56, respectively) (67), which causes its more rapid
dissociation at physiological pH and its more efficient
interaction with cisplatin. GGT activity, by converting poorly
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reactive GSH into highly reactive cysteinyl-glycine, is in fact
able to trigger the formation of cisplatin/thiol complexes in
the extracellular space (66), resulting in lower cellular
accumulation of cisplatin, reduced DNA platination and
reduced cytotoxicity (46, 64). Thus, the protective effect of
GGT expression against cisplatin cytotoxicity is dependent
on the extracellular detoxication of cisplatin, rather than
supposedly higher intracellular GSH levels. It is likely,
however, that the relevance of GGT-mediated detoxication
may depend on the specific biological context, in which the
concomitant expression of other resistance mechanisms has
also to be considered. Cellular resistance to toxic agents can
be seen as a multifactorial phenomenon, involving not only
defense mechanisms, but also cellular response to genotoxic
stress (DNA repair efficiency, DNA damage tolerance, stress
response and susceptibility to apoptosis) (7).

Dosage of cisplatin in vivo is limited by its nephrotoxicity
(68, 69), and the mechanism by which cisplatin kills
proximal tubule cells has been the object of intense
investigation for many years. Based on the fact that a high
level of GGT activity is expressed on the luminal surface of
proximal tubule cells, a series of papers focused on the
possibility that cisplatin may be bioactivated to a
nephrotoxin through the action of GGT. The hypothesis was
thus proposed that cisplatin—-GSH complexes reaching the
tubular lumen with the glomerular filtrate may undergo a
sequential extracellular hydrolysis by tubular GGT and
membrane dipeptidase activities, resulting in the formation
of cysteine—cisplatin complexes. These S-conjugates would
be then converted to a toxic, highly reactive thiol by any of
several enzymes that catalyze the cysteine S-conjugate beta-
lyase reactions (70). In agreement with this hypothesis, no
CDDP nephrotoxicity was observed in GGT knockout mice
(71), while pre-treatments with GGT inhibitor acivicin or
cysteine S-conjugate beta-lyase inhibitor amino-oxyacetic
acid allowed a protection in wild-type mice (72, 73). On the
other hand, in a recent paper, which even confirmed the key
role of GGT, the same authors reported that the inhibition of
aminopeptidase N or renal dipeptidase did not reduce
cisplatin toxicity, and that cysteine S-conjugate beta-lyase
inhibition did not prevent nephrotoxicity in vivo or
cytotoxicity in vitro (74). These conflicting data suggest that
the mechanisms of cisplatin nephrotoxicity may involve
other factors. In particular, it has to be taken into account
that both animal studies and clinical trials demonstrated that
pre-treatment with exogenous GSH reduced cisplatin-
induced nephrotoxicity without reducing its antitumor
activity (75, 76). Moreover, GGT inhibition by acivicin (77),
as well as GGT knockout mice (78), resulted in several-fold
increases in plasma GSH concentrations as compared to
controls; this in turn resulted in increased glomerular
filtration of GSH, up to concentrations of 5-30 mmol/l in
preurine (79). Such high levels are expected to provide a
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direct protection against cisplatin cytotoxicity, irrespective of
both GGT activity and the mechanism ultimately responsible
for nephrotoxic damage (64).

Other factors could also concur with the discrepancies
present in the literature. Experiments performed in vitro
showed the formation of symmetrical bis-bidentate adducts
between GSH and cisplatin, consistent with a time-dependent
formation of high molecular weight 2:1 complexes (80, 81).
More recently, it was suggested that the reaction of cisplatin
with GSH in vitro proceeds via the formation of at least 11
distinct glutathione-platinum adducts, but that only two of
those are still present in the reaction mixture after 24 h of
incubation (82). Finally, Townsend et al. have described the
formation of two different GSH cisplatin conjugates, a GSH
monoplatinum conjugate (a possible GGT substrate) and a
diplatinum GSH conjugate. The latter may not be a GGT
substrate due to the presence of a second cisplatin molecule
bound to the free amino group of glutamate (83). It can be
envisaged that factors such as the ratio of GSH to cisplatin,
the time of GSH cisplatin incubation, and the composition
of media used for incubations in fact modulate the observed
effects. Actually, the type of adducts formed and their
relative abundancy can likely account for the differences
reported with respect to the toxicity of GSH cisplatin
conjugates (64, 83, 84).

GGT Pro-oxidant Effects and Tumor Progression

In recent years, several studies documented that GGT can
exert pro-oxidant effects at the membrane surface level and
in the extracellular microenvironment. This phenomenon was
explained with the high reactivity of cysteinyl-glycine, the
GGT product of GSH cleavage. As described above, the
lower pKa of the cysteinyl-glycine thiol makes it able to
dissociate more rapidly at physiological pH, and to reduce
extracellular transition metal cations (in particular Fe>* and
Cu?*) more efficiently than GSH itself. Iron reduction by
GSH, in fact, might be limited by the chelating properties of
the alpha-carboxyl group of the glutamate residue, affecting
sterical and redox interactions of the cysteine thiol (85).
GGT-catalyzed removal of glutamic acid causes a decrease
of the cysteine thiol pKa and makes it free to interact with
iron (67). The ‘redox cycling’ started following iron
reduction was shown to produce ROS (superoxide anion,
hydrogen peroxide) and thiyl radicals, i.e. reactive species
capable of promoting several intra- and extracellular
biomolecular effects (Figure 1).

The possible pro-oxidant effects of GGT were first
highlighted in preneoplastic hepatic foci induced in rats by
chemical carcinogens, where the appearance of lipid
peroxidation in GGT-rich nodules was demonstrated after
exposure of fresh tissue sections to an incubation mixture
containing GSH and complexes of ferric iron. The effect was
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inhibited by removal of iron or GSH, as well as by addition
of free radical scavengers or inhibition of GGT activity (86).
Subsequent studies showed that incubation mixtures
containing purified GGT and transition metal ions were
mutagenic in Salmonella typhimurium strains (87, 88). It was
suggested that such GGT-induced damage could play an
active role in the processes by which cells of preneoplastic
foci progress to malignancy (86). The production of ROS, in
particular of hydrogen peroxide, following iron reduction
induced by the GGT-mediated catabolism of GSH has been
repeatedly documented (89-92), and GSH/GGT-dependent
iron reduction was confirmed to result in the promotion of
lipid peroxidation in chemically induced preneoplastic lesion
in rat liver (93), in rat liver microsomes and isolated
hepatocytes (94), and in isolated human plasma low-density
lipoproteins (LDL) (95). The pro-oxidant activity of GGT
was also recently shown to promote the iron-dependent
oxidative damage of DNA in GGT-transfected melanoma
cells, thus potentially contributing to genomic instability and
increased mutation risk in cancer cells (96).

It appears clear that metal ion redox cycling with
production of reactive oxygen species is a critical step in the
phenomena described. In respect to this, it was demonstrated
that iron transport proteins transferrin and ferritin, as well as
copper-binding ceruloplasmin, can act as sources of metal
ions for the reactions described (90, 97-98). Indeed, it was
demonstrated that GGT activity is able to promote the
release of free iron from transferrin, thus promoting the
uptake of iron by cancer cells (99). This effect may play an
additional role in supplying iron to malignant cells, and the
role of iron in carcinogenesis is well established.

The findings described so far suggest that the pro-oxidant
reactions produced by GGT could serve as an additional
source of (low levels of) endogenous ROS in cancer cells,
possibly contributing to the ‘persistent oxidative stress’
described as a factor in genomic instability and
carcinogenesis (100). It is now well established that low
(‘physiological’) levels of pro-oxidants can exert regulatory
roles within the cell by acting on targets sensitive to the
redox state of the cell (101, 102). A major role in such
regulation is played by cysteine thiols, which can undergo
different redox modifications, all of which possibly
reflecting a distinct functional state of a protein. A number
of such phenomena have been described in proteins
participating in crucial cell functions such as cell
proliferation, apoptosis, cell adhesion and gene expression,
whose alterations are of primary importance in progression
of cancer and other diseases. It was documented that GGT
activity can promote the oxidation of thiol groups in cell
surface proteins, a process involving hydrogen peroxide and
formation of mixed disulfides (‘protein S-thiolation’; 103,
104). In particular, a study performed on melanoma cells
expressing different levels of GGT activity showed a

corresponding GGT-dependent oxidation of cysteine thiols
in the cell surface tumor necrosis factor receptor-1
(TNFR1), with possible consequences on receptor—ligand
interaction and signal transduction (105). Through
production of hydrogen peroxide, which freely diffuses
across the plasma membrane, GGT/GSH-dependent pro-
oxidant reactions can also involve crucial intracellular
targets. It was shown that GGT-dependent pro-oxidants can
induce the binding of NF-KB and AP-1 to DNA (103, 106-
108), and modulate the balance between protein
kinase/phosphatase activities (109). It is well known that
redox processes can play modulatory roles in the
transduction of proliferative/apoptotic signals, due to
interactions with growth factor receptors, protein kinases
and transcription factors (110). GGT/GSH-dependent pro-
oxidant reactions were in fact shown to exert an
antiproliferative action in ovarian cancer cells (111), while
other studies in U937 lymphoma cells showed that basal
GGT-dependent production of hydrogen peroxide can
instead represent an anti-apoptotic signal (91).

The modulatory effects of GGT-mediated pro-oxidant
reactions could contribute to the resistance phenotype of
GGT-expressing cancer cells, by regulating both signal
transduction pathways involved in proliferation/apoptosis
balance, as well as by inducing protective adaptations in the
pool of intracellular antioxidants. For example, GGT-
expressing melanoma cells were shown to display a twofold
higher expression of catalase as compared to cells with low
expression of GGT (112), likely as a result of the continuous
GGT-dependent low level production of pro-oxidants.
GGT/GSH-dependent pro-oxidant reactions were also shown
to increase intracellular levels of vitamin C, by promotion of
the extracellular oxidation of ascorbic acid and uptake of its
oxidation product, dehydroascorbate (97).

GGT as a Target for Anticancer Treatments

The envisaged roles of GGT activity in the resistance
phenotype of cancer cells suggests the potential advantages
of associating GGT inhibitors with chemotherapeutics, in
order to deplete intracellular levels of GSH and/or to inhibit
extracellular drug detoxication. Different GGT inhibitors are
known, such as glutamine analogs acivicin (AT125), 6-diazo-
5-oxo-L-norleucine and azaserine (113, 114); boronate
derivatives (115); L-glutamic acid derivatives (116); gamma-
(monophenyl)  phosphonoglutamate  analogs  (117).
Unfortunately, the above mentioned molecules are toxic and
cannot be used in humans (117-119). Acivicin was recently
used in combination with aggressive therapy to deplete
tumor GSH, and complete cure of metastatic melanoma in
the liver was achieved in 90% of test animals (120).
Recently, a novel class of uncompetitive inhibitors of GGT,
structurally distinct from and less toxic than glutamine
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analogs, were described (121). The development of GGT
inhibitors with low toxicity remains an interesting
perspective of pharmacological research, and could have an
important impact on cancer therapy.

As discussed above, the antioxidant adaptations associated
with GGT expression are the basis for an increased cellular
tolerance against oxidative stress, which itself is a factor of
resistance to the effects of pro-oxidant drugs. Association of
more agents in therapy can however overcome such resistance;
in a recent paper, for example, the combination of arsenic
trioxide with subtoxic concentrations of ascorbic acid resulted
in a sensitization to apoptotic cell death of GGT-
transfected/arsenic trioxide-resistant melanoma cells (122).

Another line of evidence points to the relevance of GGT
expression and activity in the pathophysiology of cellular
processes involving nitric oxide (NO) and related
compounds, GSNO in the first place. It has been shown that
treatments of human cancer cells with NO and NO mimetics
can effectively restore the sensitivity of resistant cell
populations to the cytotoxic effects of chemotherapeutics.
NO thus acts as a ‘chemosensitizing agent’, likely by
modulating processes associated with prevention or
inhibition of cellular drug resistance mechanisms, including
those induced by hypoxia in solid tumors (123). Reactivation
of NO signalling might in some way counteract the effects
produced by hypoxia. The mechanisms by which NO
restores sensitivity to anticancer agents are not clearly
understood. Critical roles in NO chemosensitizing action
might be played by vascular changes (promotion of blood
perfusion and tumor oxygenation), radical
scavenging/antioxidant effects, down-regulation of the GSH
detoxification/redox buffering system, inhibition of key
transcription factors such as hypoxia inducible factor 1 (HIF-
1) and NF-kB, as well as inhibition of drug efflux
transporters and DNA repair enzymes (124). NO mimetics
glyceryl trinitrate (GTN) and isosorbide dinitrate attenuated
hypoxia-induced resistance to doxorubicin and paclitaxel,
and GTN patches increased the antitumor efficacy of
doxorubicin in nude mice (125). Growth inhibition and
chemosensitization in favour of carboplatin treatments were
observed after exposure of glioma cells to NONOates (126),
while significant chemosensitization to cisplatin cytotoxicity
was observed in cells transfected with inducible nitric oxide
synthase (iNOS) gene (127).

S-Nitrosothiols, GSNO initially, are considered
physiologic NO metabolites, capable of transporting NO in
blood and tissues in a stable form. On the basis of its
gamma-glutamyl structure, GGT selectively metabolizes
GSNO, thus promoting the release of its NO load (3, 128).
This fact may well be exploited in order to selectively target
NO to GGT-expressing cancer cells, by treating them with
GSNO. By investigating the kinetics of GGT with respect to
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GSNO, a K, of approximately 0.4 mM was found,
comparable with that K, value for GSH, which confirms the
feasibility of using GSNO as an efficient pro-drug in order to
perform selective NO treatment of GGT-expressing tumors
(128). Future studies will substantiate the applicability and
usefulness of such approach to therapy.

Besides GSNO, other gamma-glutamyl compounds can be
selectively cleaved by GGT expressed in cancer cells, and
the development of gamma-glutamyl pro-drugs is therefore
an attractive possibility. One such agent, 4-(N-(S-
glutathionylacetyl)amino) phenylarsonous acid (GSAO), a
hydrophilic derivative of phenylarsenoxide obtained by
attaching it to the cysteine thiol of reduced GSH (129), has
been recently shown to possess notable antiproliferative/
antiangiogenic action (130). This compound can inactivate
the mitochondrial inner membrane adenine nucleotide
translocase, thus inducing an increase in superoxide levels,
proliferation arrest, ATP depletion, mitochondrial
depolarization and finally apoptosis, both in endothelial and
cancer cells (130-132). Being a GSH derivative, GSAO is an
efficient substrate for GGT, and the product of the reaction,
4-(N-(S-cysteinylglycylacetyl)amino) phenylarsonous acid, is
accumulated much more rapidly in cells and has greater
antiproliferative activity than GSAO itself. GSAO therefore
appears to be a promising GGT-activated pro-drug.
Preclinical toxicology studies in mice and rats showed that
high GSAO dosages resulted in damage to kidney distal
tubules, possibly as a result of GSAO activation by high
GGT activity expressed by cells in proximal tubules. This is
one major aspect of GSAO pharmakokinetics in need of
thorough investigation in view of future applicability of the
compound in human therapy.

One additional aspect related to a role of GGT as
therapeutic target is given by the fact that soluble GGT may
effect a cytokine-like function. It was in fact recently
observed that the structure of GGT includes the chemokine-
like CX3C motif (133) and that GGT is able to modulate
bone resorption independently of its catalytic activity (134,
135). Moreover, it was demonstrated that urinary excretion
of GGT changes in parallel with established biochemical
markers of bone resorption, and therefore could reflect bone
resorptive activity (136). The possibility therefore exists that
the overexpression and release of GGT by human tumors
may have a role in establishment and development of bone
metastasis.

GGT Macromolecular Complexes: Novel
Biomarkers for Cancer and Other Pathologies

Serum GGT is widely used as a biomarker of liver
dysfunction and excessive alcohol use, as it is thought to
derive exclusively from the liver (1). On the other hand,
studies of the past decade have revealed that GGT serum
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levels are positively associated with the risk of
cardiovascular events (137), hypertension, type II diabetes
and metabolic syndrome (138-140), renal failure (141) and
cancer, even unrelated to hepatic involvement (142). This
raises the suspicion that diseased tissues other than the liver
might contribute to serum GGT activity, thus explaining its
broad predictive value.

The release of GGT from cancer cells was described in
several types of neoplasia, but the mechanisms by which
cellular GGT is released in blood are still poorly
characterized. Several papers investigated the possible
specificity of serum GGT complex for certain tumors, in
particular hepatocellular carcinoma, focusing on parameters
such as GGT post-translational modifications and lipoprotein
association, in the attempt to identify parameters exploitable
in diagnosis, monitoring or even prevention of cancer.
Specific GGT macroforms with clinical significance have
been reported in patients with primary hepatocellular
carcinoma, but the origin or structures of these complexes
were not established (143-145). Recently, in an in vitro study
on melanoma and prostate cancer cells, the release of a GGT-
containing soluble complex with a MW >2000 kDa, and
corresponding to a specific GGT fraction (b-GGT) found in
human plasma of healthy individuals was described (146).
This fraction, despite having the same MW as VLDL,
displays a higher density, thus showing that b-GGT found in
plasma is not simply due to the absorption of GGT onto
VLDL, but corresponds rather to a specific particle, with
properties similar to the b-GGT obtained in vitro. The
component molecules of b-GGT are still to be identified.
Variations in GGT glycosylation have been described when
comparing the enzyme from malignant and normal tissues.
These changes appear however to vary with the type of
tumor analysed (147-152), and the amount of tumor-derived
GGT forms in serum may be affected by a rapid clearance
rate (153).

Other studies are needed to better understand the properties
of serum GGT fractions and the way they are released from
cancer cells, in view of a clinical utilization of GGT as a
biomarker of disease. In a retrospective study, total serum GGT
was significantly increased in patients with metastatic renal cell
carcinoma, but was normal in those with localized primary
growths (154). Similar results were obtained in more recent
work, where both alkaline phosphatase and GGT activities
were normal in a majority of patients with localized renal cell
carcinoma, but increased in most of the patients with metastatic
disease involving liver and/or bones (155). In both cases, GGT
appeared to be a sensitive marker of metastatic renal cell
carcinoma, even though not specific for the site of metastasis.
Significantly higher serum GGT levels were also found in
hepatocellular carcinoma patients with poorly differentiated
tumours, as compared to those with well- and moderately

y-Glutamyl
pro-drugs

NO targeting
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‘/

Enzyme

inhibitors \ l
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Figure 2. Three distinct (complementary) approaches for exploiting
GGT of cancer cells as a target for pharmacological treatments. NO,
nitric oxide.

differentiated tumours (156). Total serum GGT was shown to
increase with the growth of transplantable melanoma cells in
inbred mice (157). Nevertheless, serum GGT levels seem to be
at least partly independent of GGT expression in tumors (6,
30), and their specificity as marker of cancer has been
questioned (155).

On the other hand, epidemiologic studies have sparked
further interest in elevated GGT as an independent predictor
for morbidity and mortality from causes other than liver
disease. In a recent study, the relationship of GGT with the
risk of death was examined in a cohort of 283,438 patients of
the Vienna General Hospital, and, in both sexes, GGT levels
above the reference values (GGT>9 U/l in women, >14 U/l
in men) was significantly (p<0.001) associated with all
cause, cancer, hepatobiliary, and vascular mortalities (142).
The association between GGT and risk of overall and site-
specific cancer incidence was subsequently investigated in
two large population-based cohort studies of 79,279 healthy
Austrian men (158) and 92,843 women (159). Elevated GGT
significantly increased overall cancer risk and, in site-
specific cancer models, GGT was significantly associated
with malignant neoplasms of digestive and respiratory/
intrathoracic organs in both genders. GGT was also
associated with malignant neoplasms of breast, female
genital organs, lymphoid and hematopoietic cancer (women)
and urinary organs (men). Altogether, the described studies
suggest that a better understanding of serum GGT properties
can be of use for the early identification of high-risk patients,
thus allowing for optimization of therapeutic procedures
during both the acute phase and at follow-up.

Conclusion

The findings discussed in this review clearly indicate that
GGT functions in cancer cells may be more complicated than
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previously thought. It is likely that a fine equilibrium exists
between antioxidant vs. pro-oxidant functions of GGT, and
that the latter may prevail under selected conditions, e.g. in
GGT-overexpressing cells and in the presence of redox
catalysts (metal ions). The pro-oxidant activity of GGT may
contribute to the persistent oxidative stress described in

cancer and modulate processes involved in tumor
progression, such as cell proliferation/apoptosis and
protective adaptation against electrophilic/alkylating

compounds. The heterogeneous expression of GGT in
different tumor types, and even different tumors of the same
type, may become an important determinant for selection of
therapeutic approaches, in view of its role as a factor for
targeting of NO to tumor tissue or for activation of gamma-
glutamyl pro-drugs (Figure 2). At the same time, the
potential significance of serum GGT complexes suggests the
additional application of GGT as diagnostic/prognostic
marker of cancer in the optimization of therapeutic
procedures.
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