Nuts and novel biomarkers of cardiovascular disease

Emilio Ros

ABSTRACT

Nuts are energy-dense foods, rich in total fat and unsaturated fatty acids. The favorable fatty acid profile probably contributes to the beneficial effects of nut consumption observed in epidemiologic studies (prevention of coronary heart disease and diabetes) and feeding trials (cholesterol lowering). Besides fat, the complex matrices of nuts contain many bioactive compounds: vegetable protein, fiber, minerals, tocopherols, and phenolic compounds. By virtue of their unique composition, nuts are likely to benefit newer cardiovascular risk biomarkers, such as LDL oxidizability, soluble inflammatory molecules, and endothelial dysfunction. Protection of LDL oxidation by nut intake has been documented in some, but not all, clinical studies. In one study, feeding one daily serving of mixed nuts was associated with lower oxidized LDL concentrations. Regarding inflammation, cross-sectional studies have shown that nut consumption is associated with lower concentrations of circulating inflammatory molecules and higher plasma adiponectin, a potent antiinflammatory adipokine. Clinical studies with nuts have documented reduced inflammatory cytokine concentrations but no consistent changes of C-reactive protein. Only walnuts have been formally tested for effects on endothelial function. After both walnut diets and single walnut meals, favorable vasoreactivity changes have been observed. Effects on plasma lipids have been at the center of the diet-heart hypothesis, but more evidence has accumulated that foods, nutrients, and dietary patterns may also influence novel atherogenic markers (10–15).

Tree nuts and peanuts (henceforth collectively referred to as nuts) are among the whole foods with a more impressive body of scientific evidence supporting beneficial effects on cardiovascular health. Large epidemiologic studies have consistently associated frequent nut consumption with a reduced incidence of coronary heart disease (16), whereas many feeding trials have clearly shown that intake of all kinds of nuts has a cholesterol-lowering effect, even in the context of healthy diets (17, 18). In epidemiologic studies and nut feeding trials, effects on novel biomarkers of CVD have been much less investigated than those for these cytokines and initiate a self-perpetuating inflammatory process (1–3). As our understanding of the complex pathophysiology of atherosclerotic disease has evolved beyond the accumulation of cholesterol in the arterial wall, a series of circulating, functional, structural, and genomic biological markers that reflect arterial vulnerability have been proposed as potential novel risk factors for the development of CVD (4). Among them, biomarkers of oxidation (5), inflammation (6), and endothelial dysfunction (7) have received increasing attention.

Diet changes remain the cornerstone for prevention and treatment of CVD. The landmark Seven Countries Study (8) showed ecological associations between the saturated fatty acid (SFA) and cholesterol content of the diet and an increase of both serum cholesterol concentrations and the risk of coronary heart disease in cohorts of different countries. Since then, our understanding of how dietary factors modulate multiple CVD risk factors has increased substantially (9). For many years, dietary effects on plasma lipids have been at the center of the diet-heart hypothesis, but more evidence has accumulated that foods, nutrients, and dietary patterns may also influence novel atherogenic markers (10–15).

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading causes of disability and death in industrialized nations and much of the developing world. Over the past 3 decades it has become clear that the initiation and progression of atherosclerosis, the pathological basis of CVD, results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis (1). The prevailing theory of atherosclerosis formation postulates that endothelial injury by classical CVD risk factors (smoking, high blood pressure, elevated blood cholesterol) leads to trapping of LDL cholesterol within the arterial wall, which becomes oxidized, further activating the endothelium to secrete cytokines that attract circulating mononuclear cells expressing receptors...
on incident coronary heart disease or the lipid profile. However, the emerging picture is that frequent nut consumption beneficially affects cardiovascular risk beyond cholesterol lowering. This article aims to review the epidemiologic and clinical trial evidence relating nut consumption to the novel CVD biomarkers of oxidation, inflammation, and endothelial dysfunction and to discuss possible mechanisms for the results reported. To put these findings in perspective, it is instructive to briefly review nut composition.

NUTRIENT CONTENT OF NUTS

Nuts are nutrient-dense foods because they have a high total fat content, ranging from 46% in cashews and pistachios to 76% in macadamia nuts, and provide 20–30 kJ/g nut (Table 1). Indeed, nuts are one of the natural plant foods richest in fat after vegetable oils. However, the fatty acid composition of nuts is not harmful because the SFA content is low (range: 4–16%). Nearly one-half of the total fat is made up of unsaturated fat, which includes monounsaturated fatty acids (MUFAs; oleic acid) in most nuts and mostly polyunsaturated fatty acids (PUFAs) including linoleic acid and α-linolenic acid (ALA; 18:3n–3), the plant n–3 (omega-3) fatty acid, in walnuts (19). It should be underscored that, with ≈3 g/serving, walnuts are the whole food with the highest content of ALA of all edible plants (20). The fatty fraction of nuts also contains sizeable amounts of plant sterols, with antioxidant (21) and cholesterol-lowering (22) properties.

Nuts are rich sources of other bioactive macronutrients. They are an excellent source of protein (≈25% of energy) and often have a high content of L-arginine, the amino acid precursor of the endogenous vasodilator nitric oxide (23). Nuts are also a good source of dietary fiber, which ranges from 4 to 11 g/100 g (Table 1), and in standard servings provide 5–10% of daily fiber requirements.

Among nut constituents there are also significant micronutrients. Nuts contain sizeable amounts of folate (Table 1) (22) and are rich sources of antioxidant vitamins (eg, tocopherols) and phenolic compounds (24). Almonds in particular are especially rich in α-tocopherol, whereas walnuts contain significant amounts of its isomer γ-tocopherol, increasingly recognized as a relevant antiatherogenic molecule (25). Importantly, most phenolics are located in the outer pellicle of nuts, which means that the peeled product loses much of its antioxidant capacity (24). Industrial bleaching, sometimes used to restore a desirable white color to the hard shells of nuts, destroys most of the antioxidants when the shells are naturally cracked, as shown for pistachios (26). These facts, rarely taken into consideration in prior studies with nuts, should not be overlooked in future feeding trials or when giving advice on nut intake in healthy diets.

Compared with other common foodstuffs, nuts have an optimal nutritional density in salutary minerals, such as calcium, magnesium, and potassium (Table 1). Like that of most vegetables, the sodium content of nuts is very low, ranging from undetectable in hazelnuts and pecans to 18 mg/100 g in peanuts (22). Obviously, this advantage of nuts is lost if they are consumed as a salted product.

In summary, whole, unpeeled, and otherwise unprocessed nuts have a unique composition, wherein most known nutrient and nonnutrient constituents are bioactive molecules. Most nut constituents have shown beneficial effects when clinically tested, in isolation or as part of enriched foods, for effects on diverse cardiovascular outcomes, including novel risk markers (10–13).

EFFECT OF NUTS ON NOVEL CARDIOVASCULAR BIOMARKERS

Various circulating or functional biomarkers of arterial vulnerability were primary or secondary outcomes in several controlled feeding trials of nuts. Soluble CVD biomarkers were also investigated in 3 recent epidemiologic studies in relation to frequency of nut consumption.

Nut consumption and inflammatory markers in epidemiologic studies

In a cross-sectional analysis of data from ∼6000 participants in the prospective Multi-Ethnic Study of Atherosclerosis (27),

TABLE 1

Average nutrient composition of nuts (per 100 g)

<table>
<thead>
<tr>
<th>Nuts</th>
<th>Energy (kJ)</th>
<th>SFA (g)</th>
<th>MUFA (g)</th>
<th>PUFA (g)</th>
<th>Plant sterols (g)</th>
<th>Total protein (g)</th>
<th>Arginine (mg)</th>
<th>Fiber (g)</th>
<th>Folate (mg)</th>
<th>α-Tocopherol (mg)</th>
<th>Calcium (mg)</th>
<th>Magnesium (mg)</th>
<th>Potassium (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almonds</td>
<td>2418</td>
<td>50.6</td>
<td>3.9</td>
<td>32.2</td>
<td>12.2</td>
<td>21.3</td>
<td>2.47</td>
<td>8.8</td>
<td>29</td>
<td>25.9</td>
<td>248</td>
<td>275</td>
<td>728</td>
</tr>
<tr>
<td>Brazil nuts</td>
<td>2743</td>
<td>66.4</td>
<td>15.1</td>
<td>24.5</td>
<td>20.6</td>
<td>14.3</td>
<td>2.15</td>
<td>8.5</td>
<td>22</td>
<td>5.7</td>
<td>160</td>
<td>276</td>
<td>659</td>
</tr>
<tr>
<td>Cashews</td>
<td>2314</td>
<td>46.4</td>
<td>9.2</td>
<td>27.3</td>
<td>7.8</td>
<td>18.2</td>
<td>2.12</td>
<td>5.9</td>
<td>25</td>
<td>0.9</td>
<td>37</td>
<td>292</td>
<td>660</td>
</tr>
<tr>
<td>Hazelnuts</td>
<td>2629</td>
<td>60.8</td>
<td>4.5</td>
<td>45.7</td>
<td>7.9</td>
<td>15.0</td>
<td>2.21</td>
<td>10.4</td>
<td>113</td>
<td>15.0</td>
<td>114</td>
<td>163</td>
<td>680</td>
</tr>
<tr>
<td>Macadamias</td>
<td>3004</td>
<td>75.8</td>
<td>12.1</td>
<td>58.9</td>
<td>1.5</td>
<td>116</td>
<td>7.9</td>
<td>6.0</td>
<td>11</td>
<td>0.5</td>
<td>85</td>
<td>130</td>
<td>368</td>
</tr>
<tr>
<td>Peanuts (dry roasted)</td>
<td>2448</td>
<td>49.7</td>
<td>6.9</td>
<td>24.6</td>
<td>15.7</td>
<td>23.7</td>
<td>3.1</td>
<td>8.0</td>
<td>145</td>
<td>6.9</td>
<td>54</td>
<td>176</td>
<td>658</td>
</tr>
<tr>
<td>Pecans</td>
<td>2889</td>
<td>72.0</td>
<td>6.2</td>
<td>40.8</td>
<td>21.6</td>
<td>102</td>
<td>9.2</td>
<td>1.18</td>
<td>8.4</td>
<td>1.4</td>
<td>70</td>
<td>121</td>
<td>410</td>
</tr>
<tr>
<td>Pine nuts (dried)</td>
<td>2816</td>
<td>68.4</td>
<td>4.9</td>
<td>18.8</td>
<td>34.1</td>
<td>141</td>
<td>13.7</td>
<td>2.41</td>
<td>3.7</td>
<td>34.9</td>
<td>34</td>
<td>161</td>
<td>597</td>
</tr>
<tr>
<td>Pistachios</td>
<td>2332</td>
<td>44.4</td>
<td>5.4</td>
<td>23.3</td>
<td>13.5</td>
<td>214</td>
<td>20.6</td>
<td>2.03</td>
<td>9.0</td>
<td>51</td>
<td>2.3</td>
<td>107</td>
<td>1025</td>
</tr>
<tr>
<td>Walnuts</td>
<td>2738</td>
<td>65.2</td>
<td>6.1</td>
<td>8.9</td>
<td>47.2</td>
<td>72</td>
<td>15.2</td>
<td>2.28</td>
<td>6.4</td>
<td>98</td>
<td>0.7</td>
<td>98</td>
<td>158</td>
</tr>
</tbody>
</table>

1 Data are from raw nuts, except when specified. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; NR, not reported. Data are from US Department of Agriculture Nutrient Database. Available from: http://www.nal.usda.gov/fnic/cgi-bin/nut_search.pl (cited 2 May 2008).
concentrations of soluble inflammatory markers decreased across increasing categories of nut and seed consumption. After adjustment for values of all possible confounders measured except body mass index (BMI; in kg/m^2), mean concentrations of high-sensitivity C-reactive protein (CRP), an accepted measure of systemic low-grade inflammation, decreased from 1.97 mg/L in subjects who rarely or never ate nuts and seeds to 1.71 mg/L in subjects consuming them ≥5 times/wk (P for trend: 0.003). Corresponding adjusted mean concentrations of interleukin-6 (IL-6), a potent proinflammatory cytokine, decreased from 1.25 to 1.14 pg/mL (P for trend: 0.003). Adjusted fibrinogen concentrations decreased in a similar way from 343 to 331 mg/dL (P for trend: 0.003). However, further adjustment for BMI, a strong determinant of concentrations of inflammatory markers, attenuated the magnitude of the associations, yielding borderline statistical significance. Qualitatively similar associations were observed for nuts, seeds, and peanuts and peanut butter.

In another cross-sectional evaluation of 987 diabetic women from the prospective Nurses’ Health Study (28), greater adherence to a Mediterranean dietary pattern was associated with higher concentrations of plasma adiponectin, a potent antiinflammatory cytokine originating from adipose tissue. Among the components of the Mediterranean diet, alcohol, whole grains, and nuts showed the strongest associations. The age- and energy-adjusted mean adiponectin concentration increased from 5.10 μg/mL in the lowest quintile of nut consumption to 6.15 μg/mL in the upper quintile (P for trend < 0.01), but further adjustment for additional covariates, including BMI, again attenuated the strength of the association, which became of borderline significance (P = 0.08).

A third cross-sectional study was performed in 772 older subjects at high risk of CVD living in Spain with the purpose of assessing adherence to the Mediterranean dietary pattern and its food components in relation to concentrations of soluble inflammatory markers (29). Adjusted mean serum concentrations of intercellular adhesion molecule 1 (ICAM-1; P for trend: 0.003) and vascular cell adhesion molecule 1 (VCAM-1; P for trend: 0.08), but not those of CRP or IL-6, decreased across increasing tertiles of nut consumption. ICAM-1 and VCAM-1 are cytokines signaling for cell recruitment to the arterial wall, and their circulating concentrations reflect the degree of endothelial activation by CVD risk factors (3).

Effects of nut diets on novel cardiovascular biomarkers in clinical studies

Biomarkers of oxidation

Because a substantial fraction of the fat contained in most nuts is made up of MUFAs, which are not an oxidation substrate, enrichment of lipoprotein lipids with these fatty acids after nut intake might decrease their susceptibility to oxidation. Conversely, detrimental changes of lipoprotein oxidation might occur after the consumption of walnuts because they contain high amounts of PUFAs, and double bonds in these fatty acids are preferred initiation sites for oxidative processes (30).

Oxidation markers after feeding MUFAs-rich nuts have been examined in several clinical trials. Results have not been entirely consistent in studies involving almonds. In a study of healthy subjects, Berry et al (31) showed subjects were less prone to oxidation of plasma and LDL lipids after an almond diet than after a low-fat diet. Jenkins et al (32, 33) compared diets supplemented with 2 almond doses with a similar diet supplemented with muffins in hypercholesterolemic subjects. In the first report of that study (32), the almond diets were associated with significant reductions of conjugated dienes (a marker of lipid oxidation) in LDL cholesterol by comparison with the muffin diet. In another report (33), lower concentrations of plasma malondialdehyde (an overall measure of lipid oxidation) (33) and urinary F_2-isoprostanes (a family of eicosanoids produced by nonenzymatic free radical oxidation of arachidonic acid) were observed after the almond diets. In a short-term crossover study by the same investigators (34), almond meals were associated with increased postprandial serum thiol concentrations (an inverse measure of protein oxidation) compared with bread, rice, or potato meals. However, Hyson et al (35) failed to show any improvement in the susceptibility of LDL cholesterol concentrations to an oxidative stress after feeding either whole almonds or almond oil to healthy individuals, even though SFA intake was lower during the almond diets. Single-feeding trials with diets enriched in hazelnuts (36), pistachios (37), and macadamia nuts (38) have shown an improved oxidation status, but the results must be interpreted with caution because in these studies the SFA content of the nut diets was lower than that of the comparator diets. Diets enriched in peanut products also reduced the susceptibility of LDL cholesterol to oxidative stress compared with an average American diet rich in fat, but not when compared with a low-fat diet of similar SFA content (39).

The ex vivo resistance of LDL cholesterol to oxidation was a secondary endpoint in 3 crossover feeding trials comparing PUFAs-rich walnut diets with other healthy diets matched for SFA content for effects on cardiovascular risk markers, and none of them found between-diet differences (40–42). In one study (42), the walnut diet was associated with nonsignificant decreases of the serum concentrations of malondialdehyde and oxidized LDL (oxLDL), a more atherogenic particle than native LDL, by 14% and 5%, respectively. In a recent parallel feeding trial in patients with metabolic syndrome (43), no changes of the serum oxidation profile were observed after cashew, walnut, or control diets. In another parallel feeding trial with higher statistical power than usual clinical studies with nuts, the Prevención con Dieta Mediterránea (PREDIMED) study (44), a Mediterranean diet enriched with 30 g raw, unpeeled, mixed nuts (half of them walnuts), given for 3 mo to older subjects at high cardiovascular risk, was associated with a significant 10% reduction in circulating oxLDL concentrations. A recent crossover study examined postprandial oxidation after consumption of a high-fat, high-SFA meal enriched with walnuts or olive oil in healthy subjects and patients with moderate hypercholesterolemia (45). Neither meal affected the ex vivo susceptibility of LDL cholesterol to an oxidative challenge or circulating oxLDL concentrations. In any of the 2 study groups. In summary, the available evidence suggests that MUFAs-rich nuts moderately improve oxidative status, whereas PUFAs-rich nuts (walnuts) have a neutral or slightly beneficial effect.

Biomarkers of inflammation

Plasma CRP concentrations were a secondary endpoint in 3 controlled clinical studies investigating nut diets for effects on lipid profiles (32, 42, 46). Two studies were crossover trials in
hypercholesterolemic subjects who were given 2 doses of almonds (32) and single doses of walnuts that contained ≈18% of energy (42), respectively, and neither study found significant CRP changes. In one study, however, serum inflammatory cytokines ICAM-1 and VCAM-1 were measured, and the latter was significantly reduced by 19% after the walnut diet compared with the control diet (42). A third study had a parallel design and was conducted in patients with metabolic syndrome with 3 diets (walnuts, cashews, and control) and showed a significant increase of CRP with the walnut diet and no change with the cashew diet (46). Because CRP also increased after the control diet, the elevation associated with the walnut diet was suggested to be nonspecific. In addition, contrary to usual findings, none of the 2 nut diets was associated with a cholesterol-lowering effect (46). The more statistically powered PREDIMED trial also failed to show any effect of a Mediterranean diet enriched with 30 g mixed nuts on circulating CRP concentrations (47). However, the plasma concentration of the inflammatory mediators IL-6, ICAM-1, and VCAM-1 decreased after the Mediterranean diet with nuts compared with the control diet (47). In the acute study of Cortés et al (45), postprandial rises of inflammation markers were similarly blunted after olive oil– and walnut-enriched meals, except for soluble E-selectin, another potent proinflammatory cytokine, which was lower after the walnut meal than after the olive oil meal.

Recent studies by Zhao et al (48, 49) used walnuts and walnut oil to enrich the diet in PUFAs and, particularly, ALA and to compare effects on inflammatory markers (48) and proinflammatory cytokine production by blood mononuclear cells (49) with those of an average American diet. Decreased inflammation was observed in both studies, but the beneficial changes might have been due to SFA replacement rather than to ALA in walnut products.

In summary, nut consumption appears to have no effect on CRP, but it is associated with reduced concentrations of other soluble inflammatory biomarkers. Clearly, more studies are needed on this important subject.

Endothelial dysfunction

Walnuts are the only nuts that have been formally studied for effects on vascular reactivity, as assessed by brachial artery vasodilation after ischemic occlusion of the forearm (7). A recent crossover feeding trial tested the hypothesis that, when fed for 4 wk each, a walnut-supplemented diet would improve endothelial function in 21 patients with hypercholesterolemia compared with an isoenergetic healthy Mediterranean diet (42). The results showed that, by comparison with the control diet, which had a similar SFA content, the diet supplemented with walnuts (containing ≈18% of energy) attenuated the endothelial dysfunction associated with the abnormal lipid profile. Of note, in that study changes in endothelium-dependent vasodilation correlated inversely with those of total-to-HDL cholesterol ratios ($r = 0.496$, $P = 0.036$) but not with changes of total or LDL cholesterol. In a complementary study in healthy subjects and patients with hypercholesterolemia, which also had a crossover design, Cortés et al (45) showed that adding walnuts to a high-fat, high-SFA meal counteracted ensuing postprandial endothelial dysfunction by comparison with eating the same meal supplemented with olive oil.

In summary, the results of those 2 studies suggest that walnut consumption has both acute and chronic beneficial effects on vascular reactivity. Further studies are needed to confirm that nut intake influences endothelial function.

Possible mechanisms for the effects of nuts on novel cardiovascular biomarkers

The unique composition of nuts, a natural food rich in many nutrients and phytochemicals with the capacity to improve cardiovascular outcomes, probably explains why nut-supplemented diets tend to be associated with favorable changes of CVD biomarkers.

First, regarding oxidation, nuts possess remarkable antioxidant potential, derived from tocopherols, abundant phenolic compounds (24), phytosterols (21), and, possibly, melatonin, which was shown to be present in substantial amounts in walnuts, providing a significant antioxidant load in an experimental rat model (50). Besides the classical antioxidants, characterized by their ability to directly scavenge or neutralize reactive oxidant species, nuts also contribute to building endogenous antioxidant defenses. This is the case for Brazil nuts, which are rich natural sources of selenium, a critical component of selenoproteins active in antioxidant reactions, among other important physiologic functions (51). As recently reported, consuming as little as 2 Brazil nuts/d suffices to improve selenium status and to increase the activity of whole-blood glutathione peroxidase activity, an endogenous antioxidant enzyme (52). β-Sitosterol, the predominant plant sterol in nuts (22), has also been shown to induce antioxidant enzymes, such as glutathione peroxidase and superoxide dismutase (21). Furthermore, the various bioavailable antioxidants present in nuts and other edible plants work in concert to upgrade the complex antioxidant network necessary to sustain cellular function (10). Thus, polyphenols cooperate with vitamins C and E (53) and β-sitosterol (54), and γ-tocopherol synergizes with γ-tocopherol (55), to together increase antioxidant capacity higher than that provided by each separate compound.

The fatty acid components of nuts may differently influence oxidation processes, however, and this needs to be considered for synergy or opposition to effects of constituent antioxidants. Thus, nuts rich in MUFAs, a fatty acid resistant to oxidative stress, could be expected to favorably influence oxidation biomarkers in clinical studies, whereas nuts in which oxidation-prone PUFAs predominate, such as walnuts, could enhance oxidation unless counterbalanced by an increased load of antioxidants. As described, both an antioxidant effect of MUFA-rich almonds and a neutral effect of walnuts have been observed in clinical studies. That the PUFAs in walnuts do not increase oxidative potential is not surprising given that they are among the edible plant foods disclosing highest total antioxidant capacity, by far surpassing that of other nuts (24, 56). Whole, unpeeled nuts should be consumed for maximum antioxidant potential, which resides in the outer pellicle (24). This might explain why in the clinical study of Hyson et al (35) almond oil lacked antioxidant power, but it does not explain why whole almonds behaved similarly, unless they had been processed and lost their skins (the characteristics of the almonds given were not described in the report).

Second, some nut components have shown antiinflammatory properties when tested in isolation in clinical and experimental
studies, which may explain why similar effects are observed in epidemiologic and clinical studies with nuts. Thus, there is growing evidence that dietary polyphenols in nuts, fruit, cocoa, tea, and wine may have antiinflammatory effects, mediated by both their antioxidant action and modulation of signal transduction pathways, such as the nuclear transcription factor κB, with ensuing down-regulation of inflammatory genes in endothelial cells and macrophages (57). Walnuts are particularly rich in a specific phenolic compound, ellagic acid, which has shown potent antiinflammatory effects in experimental studies (58, 59). Antioxidant tocopherols, abundant in nuts, are also believed to have antiinflammatory effects (60).

As discussed, walnuts are the only nuts that contain substantial amounts of ALA. By analogy with marine n–3 PUFAs, ALA could be expected to show antiinflammatory properties, but this has been assessed in relatively few studies and only modest or nil effects have been reported (61). Interestingly, in a study in which human monocytes cells (THP-1) were cultured with different fatty acids in the presence of lipopolysaccharide, secretion of IL-6, IL-1β, and tumor necrosis factor-α, all potent inflammatory cytokines, were significantly decreased after treatment with PUFAs compared with palmitic acid, and ALA was one of the PUFAs eliciting more favorable effects (62). Those findings suggest that ALA in walnuts might induce an antiinflammatory response. Nevertheless, most feeding studies examining the effects of ALA on inflammatory outcomes have used flaxseed oil, which is particularly rich in this fatty acid but is devoid of the many other bioactive compounds found in whole walnuts.

Magnesium, a mineral found in nuts at higher amounts than in any other edible plants (22), could contribute to the reduction of inflammatory biomarkers observed in feeding studies with nuts. Magnesium deficiency has been hypothesized to be a factor in the pathogenesis of insulin resistance, type 2 diabetes, hypertension, and CVD, conditions with a common background of chronic inflammation (63). Three large cross-sectional studies have reported an inverse association of dietary magnesium intake with the plasma concentrations of inflammatory markers CRP (64–66), E-selectin and ICAM-1 (66). Although the underlying mechanism remains to be elucidated, the likely explanation for these antiinflammatory effects is the causal link between magnesium homeostasis and insulin resistance. Thus, together with other antiinflammatory components, the magnesium content of nuts might be relevant to the reduction of both incident diabetes (67) and prevalent metabolic syndrome (68) observed in association with nut consumption.

Finally, several nut constituents might favorably influence endothelial activation and vasomotor tone. Endothelial dysfunction is a critical event in atherogenesis that is implicated both in early disease and in advanced atherosclerosis, whereby it relates to perfusion abnormalities and the causation of ischemic events (1, 2, 7). It is characterized by a decreased bioavailability of nitric oxide, the endogenous vasodilator synthesized from l-arginine (23), and increased expression of proinflammatory cytokines and cellular adhesion molecules. Endothelial injury caused by cardiovascular risk factors or atherosclerotic vascular disease reduces nitric oxide production, and this is followed by arterial wall abnormalities, both functional (inhibition of vasodilatation or paradoxical vasoconstriction) and structural (smooth muscle cell growth and blood cell adhesion) that are responsible for the initiation, development, and progression of atherosclerosis (1). Food intake is an important factor that affects vascular reactivity. Both short-term feeding trials and acute experiments with test meals to assess atherogeneic events taking place in the postprandial period have shown the potential of food for improving endothelial function, as isolated nutrients, such as n–3 PUFAs, l-arginine, tocopherol, phenolic antioxidants, folic acid, and magnesium; foods enriched with these nutrients; or healthy food patterns (12, 13, 69–72). Because sizeable amounts of all the nutrients listed above exist in walnuts, it is not surprising that both walnut diets and walnut meals were associated with improved endothelial function in 2 clinical studies (42, 45).

In support of those observations, Davis et al. (73) showed that walnut feeding reduced the expression of endothelin 1, a potent endothelial activator, in an animal model of accelerated atherosclerosis, and this effect could be attributed to the fat component of walnuts. Although no endothelial function studies have been performed after consumption of diets enriched with other nuts, they might be expected to also show beneficial effects because, with the exception of ALA, particular to walnuts, all nuts contain the bioactive nutrients described above.

CONCLUSIONS

Investigation of the molecular mechanisms underlying atherosclerosis and associated CVD showed that the disease has a complex cause beyond the accumulation of cholesterol on the arterial wall, with enhanced oxidative stress, a prominent inflammatory response, and abnormal vasomotor tone as interrelated and self-perpetuating phenomena. Novel circulating and functional biomarkers of these proatherogenic processes have been shown to be associated, independent of the lipid profile, with future cardiovascular events. Markers of oxidation, inflammation, and endothelial dysfunction are being intensively studied for important diagnostic and prognostic information.

<table>
<thead>
<tr>
<th>Effect on biomarker</th>
<th>Bioactive nut components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced oxidation</td>
<td>Antioxidants</td>
</tr>
<tr>
<td></td>
<td>α- and γ-Tocopherol</td>
</tr>
<tr>
<td></td>
<td>Phenolic compounds</td>
</tr>
<tr>
<td></td>
<td>Phytosterols</td>
</tr>
<tr>
<td></td>
<td>Melatonin (walnuts)</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
</tr>
<tr>
<td>Antiinflammatory effect</td>
<td>Monounsaturated fatty acids</td>
</tr>
<tr>
<td></td>
<td>Antioxidants</td>
</tr>
<tr>
<td></td>
<td>α- and γ-Tocopherol</td>
</tr>
<tr>
<td></td>
<td>Phenolic compounds</td>
</tr>
<tr>
<td></td>
<td>Ellagic acid (walnuts)</td>
</tr>
<tr>
<td></td>
<td>γ-Linolenic acid (walnuts)</td>
</tr>
<tr>
<td>Improved endothelial function</td>
<td>Magnesium</td>
</tr>
<tr>
<td></td>
<td>l-arginine</td>
</tr>
<tr>
<td></td>
<td>γ-Linolenic acid (walnuts)</td>
</tr>
<tr>
<td></td>
<td>Antioxidants</td>
</tr>
<tr>
<td></td>
<td>α- and γ-Tocopherol</td>
</tr>
<tr>
<td></td>
<td>Phenolic compounds</td>
</tr>
<tr>
<td></td>
<td>Folic acid</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
</tr>
</tbody>
</table>

1 Data on nut constituents and their presumed bioactivity were derived from the contents of a recent monograph on nuts and health outcomes (74).
directed to better CVD risk assessment and as potential treatment targets. Nut consumption has shown a consistent inverse association with incident CVD in prospective studies and a no less consistent cholesterol-lowering effect in feeding trials. As shown in this review, nuts also have the potential to favorably influence these novel CVD biomarkers, although evidence is still fragmentary, and additional studies are clearly warranted. As summarized in Table 2, many bioactive components of nuts, acting in isolation or most probably synergistically, might explain these beneficial effects. Although more work is needed to better understand the underlying biological mechanisms of cardiometabolic protection by these unique natural foods, it can undoubtedly be said that the whole, including the skin, is better than the parts. (Other articles in this supplement to the Journal include references 75–101.)

ER has received grants from and is a nonpaid member of the Scientific Advisory Board of the California Walnut Commission.

REFERENCES

82. Mangat I. Do vegetarians have to eat fish to optimal cardiovascular protection? Am J Clin Nutr 2009;89(suppl):1597S–601S.

84. Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? Am J Clin Nutr 2009;89(suppl):1607S–12S.

87. Craig WJ. Health effects of vegan diets. Am J Clin Nutr 2009;89(suppl):1627S–33S.

88. Weaver CM. Should dairy be recommended as part of a healthy vegetarian diet? Point. Am J Clin Nutr 2009;89(suppl):1634S–7S.

89. Lanou AJ. Should dairy be recommended as part of a healthy vegetarian diet? Counterpoint. Am J Clin Nutr 2009;89(suppl):1638S–42S.

91. Ratafia S, Haddad EH, Mejia A, Sabaté J. Walnuts and fatty fish influence different serum lipid fractions in normal to mildly hyperlipidemic individuals: a randomized controlled study. Am J Clin Nutr 2009;89(suppl):1657S–63S.
93. Lampe JW. Is equol the key to the efficacy of soy foods? Am J Clin Nutr 2009;89(suppl):1664S–72S.

