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The central importance of iron in the
pathophysiology of disease is de-
rived from the ease with which iron

is reversibly oxidized and reduced. This
property, while essential for its metabolic
functions, makes iron potentially hazard-
ous because of its ability to participate in
the generation of powerful oxidant spe-
cies such as hydroxyl radical (1). Oxygen
normally accepts four electrons and is
converted directly to water. However,
partial reduction of oxygen can and does
occur in biological systems. Thus, the se-
quential reduction of oxygen along the
univalent pathway leads to the generation
of superoxide anion, hydrogen peroxide,
hydroxyl radical, and water (1,2). Super-
oxide and hydrogen peroxide appear to
be the primary generated species. These
species may then play a role in the gener-
ation of additional and more reactive ox-
idants, including the highly reactive
hydroxyl radical (or a related highly oxi-
dizing species) in which iron salts play a
catalytic role in a reaction. This reaction is
commonly referred to as the metal cata-
lyzed Haber-Weiss reaction (1):

Fe3� � O 2
�� ➝ Fe2� � O2

Fe2� � H2O2 ➝ Fe3� � �OH � OH-

O 2
�� � H2O2 ➝ O2 � �OH � OH-

Because iron participates in the formation
of reactive oxygen species, organisms take
great care in the handling of iron. Indeed,
iron sequestration in transport and stor-
age proteins may contribute to antioxi-

dant defenses. It is now well established
that oxidants can cause the release of cat-
alytic iron (1); thus, a vicious cycle is ini-
tiated that leads to the formation of more
reactive oxygen species.

In this review, we discuss the role tis-
sue iron and elevated body iron stores
play in causing type 2 diabetes and the
pathogenesis of its important complica-
tions, particularly diabetic nephropathy
and cardiovascular disease (CVD). In ad-
dition, we emphasize that iron overload is
not a prerequisite for iron to mediate ei-
ther diabetes or its complications. Impor-
tant in its pathophysiology is the
availability of so-called catalytic iron or
iron that is available to participate in free
radical reactions.

THE ROLE OF IRON IN THE
INDUCTION OF DIABETES
Evidence that systemic iron overload
could contribute to abnormal glucose me-
tabolism was first derived from the obser-
vation that the frequency of diabetes is
increased in classic hereditary hemochro-
matosis (HH). However, with the discov-
ery of novel genetic disorders of iron
metabolism, it is obvious that iron over-
load, irrespective of the cause or the gene
involved, results in an increased inci-
dence of type 2 diabetes. The role of iron
in the pathogenesis of diabetes is sug-
gested by 1) an increased incidence of
type 2 diabetes in diverse causes of iron
overload and 2) reversal or improvement
in diabetes (glycemic control) with a re-
duction in iron load achieved using either
phlebotomy or iron chelation therapy.

Recently, a link has been established be-
tween increased dietary iron intake, par-
ticularly eating red meat and increased
body iron stores, and the development of
diabetes. A causative link with iron over-
load is suggested by of the improvement
in insulin sensitivity and insulin secretion
with frequent blood donation and de-
creased iron stores (3,4).

Although the exact mechanism of
iron-induced diabetes is uncertain, it is
likely, as discussed below, to be mediated
by three key mechanisms: 1) insulin defi-
ciency, 2) insulin resistance, and 3) he-
patic dysfunction. An understanding of
the pathogenic pathways of iron-induced
diabetes is derived mainly from studies on
animal models of hemochromatosis.

In a mouse model of hemochromato-
sis, iron excess and oxidative stress medi-
ate apoptosis of pancreatic islets with a
resultant decrease in insulin secretory ca-
pacity (5). Pancreatic islets have an ex-
treme susceptibility to oxidative damage,
perhaps because of the nearly exclusive
reliance on mitochondrial metabolism of
glucose for glucose-induced insulin se-
cretion and low expression of the anti-
oxidant defense system (6). A high ex-
pression of divalent metal transporter ad-
ditionally predisposes them for more
accumulation of iron than other cells (7)
and potentiates the danger from iron-
catalyzed oxidative stress.

In studies on thalassemic patients, in-
sulin resistance is significantly increased
(8,9). In human studies, McClain et al.
(10) recently demonstrated a high preva-
lence of abnormal glucose homeostasis in
individuals with hemochromatosis and
examined possible mechanisms for this
high prevalence. Using glucose tolerance
tests, they demonstrated not only that in-
sulin secretion is impaired but also that
there is insulin resistance. The mecha-
nisms for insulin resistance include the
possibility of iron overload causing resis-
tance directly or through hepatic dys-
function (11). In a study of patients with
unexplained hepatic iron overload, most
were found to be insulin resistant, which
suggests a common etiologic link among
hepatic iron, hepatic dysfunction, and in-
sulin resistance (12) (Fig. 1).
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Epidemiology of type 2 diabetes in
known iron overload conditions
Genetic iron overload syndromes and
diabetes. Over 80% of cases of HH (type
1) result from a mutation in the gene en-
coding the hereditary hemochromatosis
protein (HFE) (13) (Table 1). These mu-
tations lead to an accumulation of iron in
several tissues and present as a classic syn-
drome of hypogonadism, diabetes, liver
disease, cardiomyopathy, and arthritis. In
type 1 hereditary hemochromatosis, up to
60% of the affected patients develop dia-
betes (14,15). Diabetes appears to be a
result of both insulin deficiency and resis-
tance. Evidence for this is derived from
studies in HH patients whose body iron
stores were reduced with phlebotomy
and/or iron chelation therapy, which re-
sulted in improved glycemic control and
30–40% of patients achieving elimina-
tion of oral hypoglycemic therapy or a
substantial reduction in dosage (15,16).

A similar increase in the incidence of
type 2 diabetes is observed in other ge-
netic iron overload syndromes that in-
volve iron transport. For example, in

autosomal dominant hemochromatosis
syndrome involving the iron transporter
ferropontin, diabetes is present in up to
25% of patients (17). In juvenile hemo-
chromatosis involving hemojuvelin mu-
tations, 25% of patients were glucose
intolerant (18). An increased incidence of
diabetes is also seen in hereditary aceru-
loplasminemia, a condition where the
lack of synthesis of apoceruloplasmin af-
fects the distribution of tissue iron and
leads to a progressive accumulation of
iron (19). The levels of malondialdehyde
and 4-hydroxynonenals, which are indi-
cators of lipid peroxidation, are signifi-
cantly elevated in the frontal lobe and
putamen and suggest a pathogenic role
for iron-mediated oxidative stress in end-
organ manifestations of this syndrome
(20).

Several recent reports focused on spe-
cific mutations such as C282Y, and its as-
sociations with diabetes extend these
observations and suggest that even mod-
erate elevations of body iron stores out-
s ide the se t t ing o f hered i t a ry
hemochromatosis can be associated with
diabetes. The C282Y mutation particu-
larly has been shown to be associated with
elevated ferritin and transferrin saturation
values (13). This genotype is found in pa-
tients with diverse endocrine problems
including diabetes despite the absence of
overt hereditary hemochromatosis (21).
Acton et al. (22) evaluated the associa-
tions of diabetes with serum ferritin,
transferrin saturation, and hereditary
hemochromatosis mutations in the
Hemochromatosis and Iron Overload
Screening (HEIRS) Study. Serum ferritin
concentrations were associated with dia-

betes at levels below those typically asso-
ciated with hemochromatosis and iron
overload. Fumeron et al. (23), in a pro-
spective study, also reported a positive as-
sociation between transferrin and ferritin
with the onset of abnormalities and glu-
cose metabolism. They argue that their
results support a causative role of disor-
dered iron metabolism in the onset of in-
sulin resistance in type 2 diabetes.
Transfusional iron overload and diabe-
tes. Transfusional iron overload is the
most common cause of acquired iron
overload and is typically seen in transfu-
sion-dependent chronic hemolytic ane-
mia such as �-thalassemia. Impaired
glucose tolerance is often detected in the
second decade of life. In a study of 80
transfusion-dependent �-thalassemic pa-
tients, diabetes was reported in 19.5% of
patients and impaired glucose tolerance
in 8.5% of patients. The risk factors for
impaired glucose tolerance and type 2 di-
abetes found in that study were high se-
rum ferritin and hepatitis C (HCV)
infection (24). Insulin deficiency due to
iron deposition in the interstitial pancre-
atic cells, with resultant excess collagen
deposition and defective microcirculation
(25) and insulin resistance (26), are the
likely mechanisms for type 2 diabetes.
Treatment with intravenous or oral chela-
tion improves glucose tolerance in up to
one-third of these patients, suggesting a
causal role for iron (27,28). Preliminary
evidence also suggests a direct role for
iron-derived free radicals in mediating
end-organ damage of diabetes in transfu-
sional iron overload (29). In this study,
patients with higher degrees of lipid per-
oxidation had an accelerated onset of di-
abetic nephropathy.
African iron overload and diabetes.
Dietary iron overload is well described in
South African tribal populations. It is as-
cribed to cooking food in African three-
legged iron pots and eating acidic cereal,
which increases iron absorption. How-
ever, a genetic predisposition has also
been considered. Clinically, it behaves
like hereditary hemochromatosis, and
type 2 diabetes is a well known late man-
ifestation (30). Similarly, autopsy studies
of African Americans suggest that patho-
logic iron overload that cannot be linked
to specific gene mutations occurs in 1% of
these patients. This data has been con-
firmed in National Health and Nutrition
Examination Survey (NHANES) II and III
studies, where 0.9% of African Americans
had markedly elevated transferrin satura-
tions and 14% had intermediate eleva-

Figure 1—Pathogenic pathways for iron in induction of diabetes.

Table 1—Iron overload states and diabetes

Genetic iron overload
HH (C282Y and H63D mutations)
Ferropontin disease
Hemojuvelin mutation
Hereditary aceruloplasminemia

Mitochondrial iron overload
Friedreich’s ataxia (frataxin mutation)

Transfusional iron overload
Hepatic iron overload

HCV
Porphyria cutanea tarda
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tions of transferrin saturation (31). Pilot
data from the Jackson Heart Study shows
a positive correlation between serum fer-
ritin and fasting blood glucose and A1C
(r � 0.15), though no correlation has
been found between transferrin satura-
tion and glycemic status (32). Because of
these inconsistencies and absence of spe-
cific data on iron chelation or phlebotomy
to reverse diabetes or improve glycemic
control, it is difficult to draw firm conclu-
sions on the link between iron overload
and diabetes in African Americans.
HCV, porphyria cutanea tarda, and di-
abetes. Recent studies have described
not only a significantly increased risk for
diabetes in patients with HCV infection
(33,34) but also its associated conditions
such as porphyria cutanea tarda. In por-
phyria cutanea tarda, a cutaneous condi-
tion associated with increased iron
overload, up to 87% of patients were glu-
cose intolerant (35). Further, HCV can
adversely affect progression of kidney dis-
ease in patients with biopsy-proven dia-
betic nephropathy (36). HCV infection is
well known to be associated with an ac-
cumulation of iron in the liver paren-
chyma. Many patients with chronic HCV
infection often have elevated serum iron,
transferrin saturation, and ferritin levels,
and a few have severe hepatic iron over-
load (37,38). This might suggest that iron
overload has a role in the pathogenic link
between HCV and accelerated end-organ
damage in diabetes.
Type 2 diabetes in mitochondrial iron
overload. Friedreich’s ataxia, an inher-
ited neurodegenerative disease with a
trinucleotide (GAA) hyperexpansion
within the first intron of the Friedreich’s
ataxia gene (FRDA), is a classic disorder
associated with mitochondrial iron accu-
mulation. FRDA encodes for a protein
called frataxin, which has a specific asso-
ciation with the mitochondrial inner
membrane and is involved in the forma-
tion of Fe-S clusters. Friedreich’s ataxia is
associated with a high incidence of type 2
diabetes (39), suggesting a possible rela-
tion between mitochondrial iron accumu-
lation leading to mitochondrial DNA
damage and type 2 diabetes. Disruption
of the frataxin gene in pancreatic �-cells
causes diabetes following cellular growth
arrest and apoptosis, paralleled by an in-
crease in reactive oxygen species in islets
(40). In turn, this leads to progressive
damage to both mitochondrial and nu-
clear DNA (41). Noted occurrence of di-
abetes in other disorders of mitochondrial
DNA, such as Wolfram Syndrome (42),

thiamine-dependent megaloblastic ane-
mia (43), and specific disorders with mi-
tochondrial mutation (tRNA) (44),
support this conclusion. Absence of a
similar association of type 2 diabetes with
other disorders of mitochondrial iron
overload, such as Hallervorden-Spatz dis-
ease, might be due to an organ-localized
nature of iron overload in these condi-
tions (45).

The role of iron in diabetes without
overt iron overload
A relationship between high iron intake
and high body iron stores outside the set-
ting of genetic iron overload and type 2
diabetes is well recognized (46). Loma
Linda University’s Adventist Health Study
was the first to report the association be-
tween meat intake and type 2 diabetes
risk (47) that has since been consistently
observed by several other studies (48,49).
Numerous studies have confirmed that
this association is related to the high heme
content of meat and increased dietary
heme intake (3,50–52). Similarly, high
body iron stores have been linked to in-
sulin resistance (53,54), metabolic syn-
drome (53,55–57), and gestational
diabetes (58,59). Recently, Jiang et al.
(60) carried out a nested case-control
study within the Nurses’ Health Study co-
hort. Among cases of incident diabetes,
the mean concentration of serum ferritin
was significantly higher compared with
control subjects, and the mean ratio of
transferrin receptors to ferritin was signif-
icantly lower. This relationship with
markers of body iron stores persisted after
correction for various other risk factors
for diabetes, including markers of obesity
and inflammation.

Jehn et al. (61) argue that the modest
elevations in ferritin levels observed in di-
abetes may be a consequence or marker
rather than the cause of impending insu-
lin resistance and that elevated ferritin
may not reflect elevated body iron stores
or an intracellular labile iron pool that
participates in oxidant injury. However,
the common presence (59–92% of pa-
tients) of non–transferrin-bound iron
(NTBI), a form of iron most susceptible to
redox activity, in excess amounts in type 2
diabetes with a strong gradient for sever-
ity (62), and the preliminary evidence
that reduction in body iron stores with
bloodletting in type 2 diabetes results in
improvement in glycemic control and in-
sulin resistance (56,63), suggests a patho-
genic role of iron in type 2 diabetes.

Blood donation and diabetes
As discussed, iron overload is common in
patients outside the setting of known iron
overload syndromes. Insulin resistance
has been described in such patients
(11,64), and iron-chelating agents and
blood donations have been shown to de-
crease the development of diabetes in
such patients (65,66). Interestingly, even
in apparently healthy individuals, blood
donation resulting in decreased iron
stores has been associated with a low in-
cidence of diabetes (66). Recent random-
ized studies (56) have demonstrated that
iron stores influence insulin action, and
following bloodletting over a 4-month
period, insulin sensitivity improved. Fi-
nally, a low-iron diet improves cardiovas-
cular risk profiles (67). Fernandez et al.
(68) investigated the relationship be-
tween iron stores and insulin sensitivity in
181 men. Men who donated blood more
than two times over a 5-year period were
matched with nondonors. Blood dona-
tion was associated with increased insulin
sensitivity and decreased iron stores. Ad-
ditional and intriguing support to this as-
sociation also comes from a study on
patients with iron deficiency who exhibit
a decreased incidence of diabetes.

THE ROLE OF IRON IN
COMPLICATIONS OF
DIABETES
The importance of protein glycation is
well known in the pathogenesis of dia-
betic vascular complications. Transition
metals also play a role in protein glycation
induced by hyperglycemia. It has been
shown that glycated proteins have a sub-
stantial affinity for the transition metals,
and the bound metal retains redox activ-
ity and participates in catalytic oxidation
(69). Thus, should similar glycochelates
form in vivo, reactions mediated by the
chelates could be involved in the vascular
complications of diabetes (70). Desferox-
amine causes a modest reduction in A1C.
Also, in in vivo conditions, treatment with
desferoxamine has been shown to
modestly reduce A1C levels in patients
with non–insulin-dependent diabetes
(71) and diabetic rats (72). In this section,
we review additional clinical and epide-
miological studies and pathogenic mech-
anisms that link iron to complications of
diabetes.

The role of iron in diabetic
nephropathy
Evidence linking iron to diabetic ne-
phropathy includes 1) animal and epide-
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miological studies, 2) studies in which an
increased amount of iron has been shown
in the kidneys of both animals (73,74)
and humans (75) with kidney disease, 3)
evidence for increased urinary iron in pa-
tients with diabetic nephropathy, and 4)
the prevention of progression either by an
iron-deficient diet or agents that bind and
remove iron (chelators) (76–78).

Animal studies provide considerable
evidence for the role of iron and oxidants
in diabetic nephropathy (79–84). Oxida-
tive stress from factors such as hypergly-
cemia, advanced glycation end products,
and hyperlipidemia further contribute to
the availability of intracellular iron that
can generate and viciously worsen oxida-
tive stress and renal damage. Iron content
in the kidney has been shown to be in-
creased in an animal model of diabetes
(84), and urinary iron excretion is in-
creased early in the course of diabetic re-
nal disease in humans (83,85). There is
considerable evidence that, once renal in-
sufficiency develops, regardless of etiol-
ogy, it tends to progress over time. This
has been interpreted to indicate some
common pathways for progression of kid-
ney disease. Thus, lessons learned from
other models of progression are likely to
be relevant to diabetic nephropathy. In
proteinuric models of kidney disease,
iron accumulates within proximal tubule
lysosomes. Nankivell et al. evaluated iron
accumulation in kidney biopsies of pa-
tients with chronic kidney disease and
proteinuria by energy-dispersive analysis.
Compared with normal kidneys, iron ac-
cumulates in proximal tubular lysosomes
in chronic kidney disease kidneys, and its
accumulation correlates with the degree
of proteinuria (73,75). Most importantly,
the pathogenic role of iron in progression
is indicated by the observation that pro-
gression can be prevented either by an
iron-deficient diet or chelators (76–78).
More specifically, in diabetes, a recent
randomized trial involving 191 patients
with diabetes, proteinuria, and a de-
creased glomerular filtration rate showed
that a low-iron–available, carbohydrate-
restricted, polyphenol-enriched diet
compared with a standard protein-
restricted diet had a renoprotective effect
(67).

The role of iron in endothelial and
vascular disease
The possibility that iron status has a role
in CVD was postulated by J.L. Sullivan in
1981 (70). The man-woman ratio for me-
dian serum ferritin levels for ages 18–45

years is 3.8, which is similar to the in-
creased risk for heart disease, with the re-
duced risk against heart disease in women
ending with the onset of menopause. Ep-
idemiologic studies in overt iron overload
states such as transfusional iron overload
and hemochromatosis have shown that
the incidence of cardiac disease is in-
creased (64) and that treatment with iron
chelation improves cardiovascular out-
come (27,86,87). Similarly, several stud-
ies have demonstrated a direct association
between increased iron intake, body iron
stores, and cardiovascular risk in the gen-
eral population. Increased intake of heme
iron is associated with increased cardio-
vascular events (88–91), and increased
body iron stores are associated with myo-
cardial infarction in a prospective epide-
miological study (92). Additionally,
varieties of cardiovascular risk factors are
associated with iron overload and com-
monly cluster in the metabolic syndrome.
Ramakrishnan et al. (91) have demon-
strated this close relationship between
iron stores and cardiovascular risk factors
in women of reproductive age in the U.S.
The association was seen with total cho-
lesterol, triglycerides, diastolic blood
pressure, and glucose, factors that often
cluster in individual patients. Additional
evidence of the role of iron can also be
derived from studies on surrogate mark-
ers such as carotid atherosclerosis finding
a positive association with iron stores
(93). However, several other studies ar-
gue against an association between in-
creased iron intake and body iron stores
and cardiovascular risk (94 –99). One
possible reason for these conflicting data
is the lack of precision of markers that
were used to indicate iron load. In most of
these studies, serum ferritin has been
used as an indicator of iron load; how-
ever, serum ferritin also increases with a
variety of inflammatory and stressful con-
ditions. Similarly, other markers indica-
tive of iron status in the body such as
transferrin saturation are not reflective of
total body iron stores or the presence of
reactive forms of iron in blood. In fact,
NTBI may be present in the serum even
when transferrin is not fully saturated
(62,100).

Pathologic mechanisms for iron in
promoting vascular disease can be de-
rived from cell culture studies, animal
models, and human functional studies
(vascular reactivity). In cell culture mod-
els, the addition of NTBI to human endo-
thelial cell cultures increases surface
expression of adhesion molecules

(101,102) and also increases monocyte
adherence to the endothelium. These ab-
normalities can be corrected by the addi-
tion of iron chelators such as desferoxamine
and dipirydyl. Such an addition decreases
expression of adhesion molecules and
monocyte adherence (101–103). In human
studies of end-stage renal disease patients,
intravenous iron therapy has been shown to
increase vascular and systemic oxidative
stress (104–106), promote atherosclerosis
(106), and increase the risk of arterial
thrombosis (105). Further, intravenous
iron has been shown to cause impaired
flow-mediated dilatation in the brachial ar-
tery, a surrogate for endothelial dysfunction
(107). Conversely, improvement in vascu-
lar reactivity after phlebotomy in patients
with high-ferritin type 2 diabetes further
supports these observations (108). Addi-
tionally, several recent studies on cardiovas-
cular evaluation and outcome in high-
frequency blood donors demonstrate
improvement in surrogate markers of vas-
cular health such as decreased oxidative
stress and enhanced vascular reactivity
when compared with low-frequency do-
nors (107). However, conflicting data exists
regarding the relationship between de-
creased iron stores from frequent blood do-
nation and hard end points such as a
decrease in cardiovascular events and mor-
tality (66,109).

Plasma NTBI measures reactive forms
of iron that result in increased oxidative
stress and cell injury. A recent prospective
study on the association of NTBI with car-
diovascular events in postmenopausal
women, the first of its kind, disappoint-
ingly showed no excess of CVD or acute
myocardial infarction in patients with a
highest tertile of NTBI compared with
those with a lowest tertile of NTBI (110).
The reason for negative results in this
study might reside in the limitations of
the study itself, including short follow-
up, low event rates, and age of the popu-
lation studied (49–70 years). Also, the
NTBI assay method used yielded negative
NTBI values in some patients and skepti-
cism has been cast on this method before
(111). Future studies using a reliable and
precise NTBI measurement method to
test its association with cardiovascular
events will be very informative. Alterna-
tively, better methods of measuring ex-
cess free/catalytic iron need to be
developed and validated.

The beneficial effect of iron chelators
on endothelial dysfunction suggests the
role of iron in vascular disease. Impaired
endothelial function as a result of in-
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creased NAD(P)H oxidase-dependent ox-
idant generation was restored by
desferoxamine (112). Furthermore, des-
feroxamine has been shown to prevent di-
abetes-induced endothelial dysfunction
(113) and deficits in endoneural nutritive
blood flow in streptozotocin-induced di-
abetic rats (113,114). Additionally,
dexrazoxane, a chelating agent, has been
shown to prevent homocysteine-induced
endothelial dysfunction in healthy
subjects.

Desferoxamine continues to be the
most common iron chelator in use, but it
has several limitations, including the need
for parenteral administration, side effects,
and cost. The availability of safe and ef-
fective oral iron chelators such as de-
feriprone and deferasirox has made
treatment of iron overload states more
practical. These drugs are widely available
outside the U.S. but have not yet been
approved by the Food and Drug Admin-
istration. Yet another potential advantage
of oral iron chelators is their ability to
penetrate the cell membrane and chelate
intracellular iron species (115). Random-
ized clinical trials of these agents are
needed to determine their effectiveness
in treating/preventing diabetes and its
complications.

CONCLUSIONS
In summary, there is suggestive evidence
that iron plays a pathogenic role in diabe-
tes and its complications such as microan-
giopathy and atherosclerosis. Reliable
and sensitive methods need to be devel-
oped to precisely measure the free/
catalytic iron that participates in oxidative
injury. Iron chelation therapy may
present a novel way to interrupt the cycle
of catalytic iron–induced oxidative stress
and tissue injury and consequent release
of catalytic iron in diabetes and to prevent
diabetes-related complications.
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